

Assessment of Vitamin D status deficiency in Albanian pregnant women

Ersida Kapllani

MD, Med. Lab. Specialist

University of Medicine, Tirana Laboratory Department Pegasus Med Laboratory

27th Balkan Clinical Laboratory Federation & 30th National Biochemistry Congress of TBS October 27th - 31st 2019, Antalya, Turkey.

Vitamin D Deficiency

Vitamin D deficiency is a major public health problem worldwide today.

□ In recent decades there have been many scientific studies which raise the concern of a high prevalence of vitamin D deficiency in the general population and at risk groups such as pregnant women, adolescents, third age in particular.

□ There is no other study in our country so far on vitamin D levels in the population or in specific population groups such as pregnant women. Given the important role vitamin D plays in both the pregnant woman and the fetus, such a study is of interest and hopefully will be followed up by other studies in the future.

Purpose of the study

The purpose of this study is to evaluate:

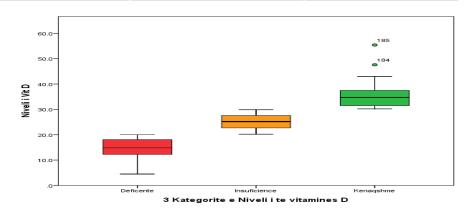
- ☐ Prevalence of vitamin D deficiency in Albanian pregnant women
- Prevalence of Vitamin D insufficiency in Albanian pregnant women
- ☐ Some factors during pregnancy that may affect Vitamin D deficiency in the blood of pregnant women

This study was prompted by data from similar studies conducted in Europe and around the world where the presence of vitamin D deficiency in women in general and in pregnant women in particular has been identified.

Material and method

- Serum levels of 25-hydroxyvitamin D (25-OH-D) were evaluated in 185 Albanian healthy pregnant women aged 18-47 years old, which are presented at the National Blood Transfusion Centre during the period from July to December 2018. The gestational age of the participants was a 3-41 week.
- A general information form was completed for each pregnant woman included in the study. In this form, for every pregnant woman, were collected general demographic data (self-reported) regarding age (in years), weeks of pregnancy, place of residence, number of pregnancies, education level, use of multivitamins and/or vitamin D, smoking, alcohol etc. The residence of the subjects included in the study was with a non-stop duration > 1 year.
- All participants with a history of chronic diseases and subjects who reported receiving medication were excluded from the study.

Material and method


- 25-OH-D levels were evaluated on a blood sample obtained by venipuncture in a plain tube. Serum level of 25-OH-D was measured using the CMIA (Chemiluminiscent Microparticle Immunoassay) method in Abbott Architect i2000 platform.
- We used the Endocrine Society recommendation cut-off of 25-OH-D to define vitamin D status: <20 ng/mL deficiency; 20-30 ng/ml insufficiency; > 30ng/ml adequate Vitamin D status.

Evaluation of 25-OH Vitamin D	25-OH Vitamin D
Severe deficiency	< 10 ng/ml (25 nmol/L)
Deficiency	< 20ng/ml (50nmol/L)
Insufficiency	20-30 ng/ml (50-75 nmol/L)
Normal	> 30ng/ml (75 nmol/L)

Vitamin D level in blood	Variable	Frequency of the variable	Values %
Insufficiency or deficiency	Vit D <30ng/ml	137	74.1
Normal	Vit D >30ng/ml	48	25.9
Total		185	100

Out of 185 Albanian pregnant women participating in our study we found that 137 (74%) of them had hypo-vitaminosis D and only 48 (26%) of them had optimal levels of vitamin D.

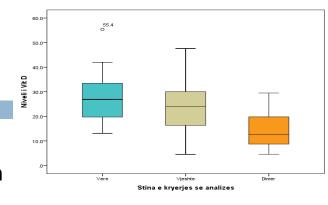
Vitamin D level in blood	Variable	Frequency of the variable	Values %
Deficiency	Vit D < 20ng/ml	76	41.1
Insufficiency	Vit D 20-30 ng/ml	61	33.0
Normal	Vit D >30ng/ml	48	25.9
Total		185	100

Vitamin D level in blood	Variable	Frequency of the variable	Values
			%
Severe deficiency	Vit D <10ng/mL	9	4.9
Moderate deficiency	Vit D < 20ng/mL	67	36.2
Insufficiency	Vit D 20-30 ng/mL	61	33.0
Normal	Vit D >30ng/mL	48	25.9
Total		185	100

Categorization	Particip	ants (Nr, %)	Vitamin D	p-Value
			<30ng/ml (n3 &%)	
			Age	
Age < 20 years	11	(5.9%)	10 (90.9 %)	
Age 20 - 30 years	113	(61.1%)	86 (76.1 %)	
Age 30 - 40 years	59	(31.9%)	41 (69.9 %)	
Age 40 - 50 years	2	(1.1%)	0 (0 %)	0.042
			Season	
Summer	52	(28.1%)	32 (61.5%)	
Autumn	111	(60.0%)	83 (74.8%)	
Winter	22	(11.9%)	22 (100 %)	0.003

- It turns out that age represents statistically significant differences between the groups of women included in the study (p <0.05). With age increase the prevalence of vitamin D deficiency decreases.
- ➤ The season of sampling affects the level of vitamin D in the blood; the prevalence of Vitamin D deficiency is higher during the winter season (100%) and decreases towards the summer season (62%).

Categorization	Particip	ants (Nr, %)	Vitamin D <30ng/ml (n3 &%)	p-Value
		Number	of pregnancies	
Primipare	78	(42.2%)	59 (75.6 %)	
Pluripare	107	(57.8%)	78 (72.9 %)	0.674
		Pregna	ncy trimester	
First trimester	65	(35.5%)	53 (65 %)	
Second trimester	49	(26.8%)	41 (83.6 %)	
Third trimester	71	(37.7%)	43 (60.5 %)	0.04


➤ Pregnancy trimester significantly affects the prevalence of vitamin D deficiency in the blood of women included in the study (p <0.05); the prevalence of vitamin D deficiency is lower in the third trimester of pregnancy.

Categorization	Participants (Nr, %)	Vitamin D <30ng/ml (n3 &%)	p-Value
	Educ	ational level	
Elementary	60 (32.4%)	48 (80 %)	
High School	49 (26.5%)	33 (67.3 %)	
University	74 (40.0%)	56 (75.6 %)	0.311
	Regior	of residence	
North Alb.	26 (14.1%)	16 (61.5 %)	
Middle part	151 (81.6%)	113 (74.8 %)	
South Alb.	8 (4.3%)	8 (100%)	0.083
Engagement at work			
Not employed	83 (44.9%)	59 (71 %)	
Employed	102 (55.1%)	78 (76.4 1%)	0.406

From the table, It appears that education, region of residence and work engagement did not significantly (statistically) affect vitamin D levels in the groups included in the study.

Assessment of the association of vitamin D levels in blood with factors that may affect it in pregnant women

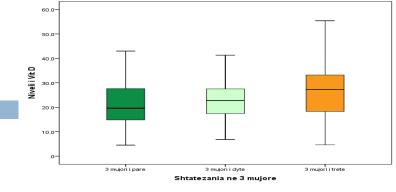

Evaluation of the correlation between Vitamin D level and the season of analysis:
Vitamin D level decreases as the season of analysis is changed from summer to winter.

Table 20: Correlation between Vitamin D level and the season of sampling			
		Level of Vitamin D	Season
Level of Vitamin D	Pearson Correlation	1	356**
	Sig. (2-tailed)		.000
	Sum of Squares and Cross-products	16033.307	-374.986
	Covariance	87.138	-2.038
	N	185	185
The season of sampling	Pearson Correlation	356 ^{**}	1
	Sig. (2-tailed)	.000	
	Sum of Squares and Cross-products	-374.986	69.135
	Covariance	-2.038	.376
	N	185	185
**. Correlation is significant at the 0.01 level (2-tailed).			

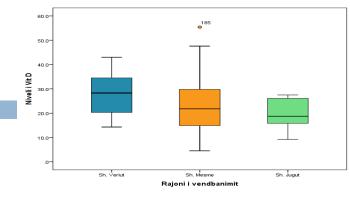

 Correlation between Vitamin D Level and Age Categorization: Vitamin D levels increase with increasing age of pregnant woman

Table 21: Correlation between Vitamin D Level and Age			
		Level of Vitamin D	Age categorization
Level of Vitamin D	Pearson Correlation	1	.202**
	Sig. (2-tailed)		.006
	Sum of Squares and Cross-products	16033.307	203.203
	Covariance	87.138	1.104
	N	185	185
Age categorization	Pearson Correlation	.202**	1
	Sig. (2-tailed)	.006	
	Sum of Squares and Cross-products	203.203	63.384
	Covariance	1.104	.344
	N	185	185
**. Correlation is significant at the 0.01 level (2-tailed).			

Correlation between Vitamin D Level and Pregnancy Trimesters: Vitamin D levels increase with increasing pregnancy months from the first trimester to the second and to the third trimester.

Table 23: Correlation between Vitamin D Level and Pregnancy Trimester			
		Level of Vitamin D	Pregnancy Trimester
Level of Vitamin D	Pearson Correlation	1	.231**
	Sig. (2-tailed)		.002
	Sum of Squares and Cross-products	16033.307	340.777
	Covariance	87.138	1.852
	N	185	185
Pregnancy Trimester	Pearson Correlation	.231**	1
	Sig. (2-tailed)	.002	
	Sum of Squares and Cross-products	340.777	135.805
	Covariance	1.852	.738
	N	185	185
**. Correlation is significant at the 0.01 level (2-tailed).			

Correlation between vitamin D level and the region of residence for pregnant women:
Vitamin D level decreases with change of residence from North to South of Albania.

Table 26: Correlation between vitamin D level and region of residence			Region of residence
		Level of Vit D	
Level of Vitamin D	Pearson Correlation	1	194**
	Sig. (2-tailed)		.008
	Sum of Squares and Cross-products	16033.307	-139.432
	Covariance	87.138	758
	N	185	185
Region of residence	Pearson Correlation	194**	1
	Sig. (2-tailed)	.008	
	Sum of Squares and Cross-products	-139.432	32.249
	Covariance	758	.175
	N	185	185
**. Correlation is significant at the 0.01 level (2-tailed).			

Multiple linear regression estimation

Provides data on the association between the variable vitamin D level and the independent variables obtained in this study.

It turns out that the statistically significant variables for the regression ranked by their significance are:

- Season of analysis
- Residence region.
- Trimester of pregnancy.
- Age categorization.

Whereas the statistically insignificant variables are:

- Work engagement
- Education level.
- Number of pregnancies.

Conclusions

From the assessment of vitamin D levels in the blood of pregnant women included in the study resulted in a higher prevalence of Vitamin D deficiency.

- 74% of pregnant women had vitamin D levels ≤30 ng/ml (75nmol / L)
 41% of pregnant women result with vitamin D deficiency <20ng/ml (50nmol/L)
 33% of pregnant women result with vitamin D insufficiency 20-30ng/ml (50-75nmol/L).
- > 26% had normal levels >30ng / ml (75nmol / L).

Vitamin D levels in our study are influenced by factors such as the season of analysis, their age, trimester of pregnancy.

While the least important factors resulted: engagement at work, education level, number of pregnancies.

Recommendations

The prevalence of Vitamin D deficiency in Albanian pregnant women is quite high and disturbing. This is a serious problem with a direct impact on the health of the mother and child.

For this reason we recommend setting up a working group of specialists to build a strategy of screening, vitamin D supplementation and monitoring of vitamin D levels in pregnant women as an at-risk group.

Promote projects to study the prevalence of vitamin D in the Albanian population and in the larger risk groups in order to develop national recommendations for the Albanian population and its at-risk groups.

Thank you!

